

V&V of M&S: Past, Present and Future

Prof. Dr. Axel Lehmann Universität der Bundeswehr München und ITIS GmbH GERMANY

Axel.lehmann@unibw.de

ABSTRACT

Measures for Verification and Validation (V&V) of models, simulations and data (M&S) have been always important aspects and caused specific activities ensuring quality and utility of M&S results and their interpretation. Along with rapid innovations and increasing performance of computer systems, networks and software, capabilities as well as complexity of models and simulations are permanently increasing. Therefore, the major challenges of M&S nowadays are to master M&S complexity as well as quality demand.

To substantiate specific quality demands requires to keep track of evidences for correctness, validity and usefulness of models, simulations and data through verification and validation. This contribution presents an overview about importance and evolution of V&V processes and techniques established over the past, and it summarizes briefly current state-of-the-art as well as major challenges for future M&S projects.

1.0 INTRODUCTION

Besides application of fundamental natural laws, and besides processing of experiments in real world scenarios, modeling and simulation (M&S) is considered as the third pillar for enabling generation of new knowledge and of product innovations. Modeling and simulation (M&S) are receiving increasing importance as a technology which supports learning and training capabilities, serves for decision support as well as for systems analysis and evaluation. Rapid advancements of computer and communication technologies enable also rapid advancements in the field of modeling and simulation: Development and application of new modeling methods and simulation techniques, as well as a wide and increasing range of M&S application domains which result in increasing complexity of models, simulations and data.

Besides benefits of these innovations and advances, increasing risks with respect to quality of simulation model development and operation as well as regarding credibility and utility of simulation results and their interpretation have to be considered. As demonstrated by several cases, the use of erroneous models, invalid simulations or data can lead to severe safety-critical situations and can result in wrong decisions and economic damages. In June 1995, the cruise ship *Royal Majesty* grounded on Rose and Crown Shoal about 10 miles east of Nantucket Island, Massachusetts, due to a navigation model error which caused a severe safety problem. Though there were no deaths or injuries as a result of this accident but repair of the vessel and lost revenue were estimated at about US-\$7 million ([6]). Other examples of modelling errors caused deficient designs of airport baggage handling and delivery systems leading to significant economic damages.

Especially in context of the increasing importance of manifold M&S application such as component-based modeling, parallel and distributed simulation, collaborative simulation or agent-based simulation, efficient quality control and credibility assurance mechanisms have to be applied to avoid safety-critical, expensive and other unwanted side effects. This requires the application of standardized engineering processes for M&S design, development and operation, including careful selection and application of M&S verification, Validation and Acceptance (VV&A) processes, methods and supporting tools.

This chapter presents a brief overview of terminology and of basic concepts applied in context of modelling and simulation, in general. It also includes a review of the evolution of VV&A methods and techniques applied to perform quality assurance, verification and validation.

1.1 Basic Terminology

Following J. Rothenberg's definition, a model can be defined as a symbolic, abstract, cost-effective and safe referent of something else for some specific cognitive purpose [1]. Most of human reasoning and decision making processes are based on mental modeling. Even in everyday life, mental models are being used for analysing situations or for making decisions. Understanding and analysis of real world problems require – at least in general – simplification and abstraction of reality as humans are only able to conclude interdependencies between about 5 - 7 parameters at the same time.

As mental models are built intuitively based on experiences, they belong to the category of **inductive models**. Inductive modelling approaches enable reasoning based on similar situations or cases. In contrast, the majority of computer-based models and simulations used nowadays for analyses, decision making or training are designed and applied as **deductive models** expressing qualitative or quantitative dependencies between goal, input and state parameters. Interdependencies between these parameters can be described mathematical formulas, numerical or logical algorithms. In the following, we will focus on design and application principles of those kinds of deductive models.

Along these lines, and in accordance with Maisel and Gnugnoli (in [3]), **simulation** can be defined as **a** (numerical) technique for conducting experiments on a computer; this technique involves certain types of mathematical and logical models that describe real world behaviour or the behaviour of a system over periods of time. This definition describes simulation explicitly as a technique for solving and using models by means of computers. This definition also indicates that (computer-based) simulation is a multi-stage process which differentiates between stages like conceptual model design, its formal description, technical solution and experimental applications.

For collecting evidences of correctness, validity and utility of models, simulations and data, some general principles and specific techniques for M&S verification and validation can be applied. An informal but clear distinction between these terms has been presented already long time ago by Balci: Application of verification techniques provides evidences for M&S correctness ("Is the **model right** ?") opposed to validation techniques which can provide evidences for validity and utility of an M&S regarding its specific application goals and constraints ("Is it **the right model**?"). Meanwhile, multiple and more precise definitions for verification and validation are provided by national and international standards, like in DoD-or IEEE-Standards.

In GM-VV-Volume 1 ([19]), the following definitions are established and are used by all contributions of this Lecture Series seminar:

- Verification: The process of providing evidence justifying the M&S system's correctness.
- Validation: The process of providing evidence justifying the M&S system's validity. Validity is the property of an M&S system's representation of the simuland to correspond sufficiently enough with the referent for the intended use. The simuland is the system or process that is simulated by a simulation while the referent is "... the codified body of knowledge about a thing being simulated (IEEEStd 1516.4; [12]).
- Acceptance: The process that ascertains whether an M&S system is fit for its intended use.
- Project demands like use risk, time schedules, limited resources or intellectual property rights can be constraints that have to be considered while planning M&S activities, Therefore, project-specific tailoring of M&S activities including V&V planning is required in general. In context of GM-VV,

Tailoring is defined as "...the modification of V&V processes V&V organization and V&V products to fit agreed risks, resources, and implementation constraints." ([19])

These and some alternative but closely related definitions from other international M&S standards can be found in SISO-GUIDE-GM-VV-001.1-2012 (Volume 1 [19]).

2.0 BASIC PRINCIPLES AND TECHNIQUES FOR M&S DEVELOPMENT; VERIFICATION AND VALIDATION

In the first decades of computer-based M&S, modeling was considered more as creative art rather than an engineering discipline. Shannon described "....the art of modeling consists in an ability to analyse a problem, abstract from it its essential features, select and modify basic assumptions that characterize the system, and then enrich and elaborate the model until a useful approximation results." ([2]). Already in the same book – published in 1975 – Shannon and others also mention model building as "... an evolutionary multi-stage process where evolution is depending on factors like user requirements, requested model flexibility, available resources and skills." But he also mentions that a model building process also relays on the communication and collaboration between model builder and model user to ensure that the modelling results meet the relevant goals, objectives and criteria of a project defined by the project sponsor ([2]).

To assure a demanded level of M&S quality, utility and credibility of its results, this contribution promotes the application of the general "divide and conquer" engineering principle in threefold:

- Each M&S project has to be considered and should be processed like a typical engineering process: M&S development and application require strict separation between different M&S phases and activities. According to Figure 1, each M&S phase or activity has to result in a work product of (intermediate) M&S results along with some documentation. For each M&S phase, roles and responsibilities of team members have to be defined performing the activities and contributing to these work products;
- Verification and validation (V&V) of (intermediate) work products of each modeling phase should be performed stepwise by application of verification and validation processes and techniques. All results of applied V&V activities have to be documented by means of V&V reports (see Figure 2).
- Basically, V&V planning which includes the selection of V&V techniques and intensity of V&V activities should be tailored according project-specific requirements and constraints.

Figure 1: Typical multi-phase M&S design, development and application process ([5], [4]).

In accordance with these definitions and as widely accepted by the M&S community, a model and simulation building and application process is basically a multi-stage process. As demonstrated in Figure 1, each stage, or phase, of this process requires generally input from domain experts and/or data, an execution of stage-specific activities by skilled persons, and each stage has to provide an (intermediate or final) work product with documentation as result of this working stage. The iterative, evolutionary character of a typical M&S building process can lead to optional solutions, work products as well as to different versions of a

work product (as indicated by the tree-structured graph on the right hand side in Figure 3 which will be discussed in detail in Section 2.1).

Figure 3: Typical Multi-Phase M&S Design, Development and Application Process (e.g. [4], [5], [17]).

2.1 A Systems Engineering Approach for M&S Development and Operation

As mentioned before, in the past computer-based modelling and simulation model building has been considered more like an art rather than a scientific or an engineering challenge (e.g. see Shannon [1]). Due to permanently increasing scope and complexity of models being built and applied nowadays, M&S projects can only be mastered if some general engineering principles are also applied for M&S design, development, maintenance, and quality assurance. One of those principles concerns guidelines or standards for well-structured and globally accepted M&S- and V&V processes. The meta model in Figure 2 describes the generic structure of a typical M&S building and application process, including activities, working products, roles and responsibilities of those contributing to an M&S project.

Permanent increasing performance and capabilities of ICT hardware and software, improved or novel modeling methods and a huge variety of powerful M&S tools enable the development and application of very complex models. On one side, basic engineering practices and standardized procedures are required to guarantee the demanded quality of development and operation processes of complex simulation applications as a whole.

Like in other engineering disciplines (e.g. [8], [10], [11], [12]), as well as already fixed in M&S standards like in IEEE 1516.4 for the FEDEP ([12]), or in "Generic Methodology for Verification and Validation of Models, Simulation and Data (GM-VV)" ([19]), a "divide and conquer" strategy is proposed according to which an M&S process consists of a fixed sequence of different modeling phases, or development levels, respectively. To process the activities of a modeling phase requires phase-specific knowledge and input data to transform the results – the work products – of the previous modeling phase. For example, according to Figure 2 and Figure 3, each M&S development process starts with a problem definition phase (development level 1) based on a project's Sponsor Needs (SN) in which information about goals, requirements and constraints of a concrete M&S project are used as input to produce a Structured Problem Specification (SPD) as result documented in an intermediate work product. In the following development phase, this work

product together with additional information (e.g. measured data or assumptions about a system under consideration) should be used as specification for transformation of the Structured Problem Description to a work product "Conceptual Model" (CM). The Conceptual Model in turn can be considered as specification for transforming the Conceptual model to a Formal Model (FM) by using a problem adequate modeling method or formalism, etc. ([4], [9], [17]).

As indicated by the green colored graphical example of a tree structure in Figure 3 (on the right hand side), nodes represent work products and arcs represent transformations between nodes. A Structured Problem Description (SPD) may result in different Conceptual Model (CM) options (in this example: 2 nodes on the next M&S development level). As a result of some modifications, each of those Conceptual Model work products might be modified again in different versions (as indicated by doted lines between the nodes on the same level). In general, transformation of an intermediate work product can result in different, optional solutions in the following modeling phase (work products), while each of those can be implemented in different (e.g. refined) versions again.

This approach leads to a tree-structured M&S development process with relations like "transformation" or "modification" between intermediate work products and final M&S experimentation results. Starting from the root node down to the leaves of a tree, each path describes all the intermediate work products of a possible solution or alternative solution approaches for a given problem. Vice versa, paths starting from leaves up to the root of a tree can be used for error detection, fault analysis and interpretation of experimentation results [13], [16].

Besides these benefits, this systems engineering approach offers additional opportunities for efficient reusability or further development of models or model components. These developments can start from or are based on already existing intermediate work products and links to those roles or individuals who have been in charge of these work product developments. To support effectively those additional kinds of M&S application and to keep track of a model's history as basis for further developments, tool support by a model management system is highly recommended. Major capabilities and services of such a model management system serving as platform for all those involved in the different phases of an M&S process should include:

- Versioning;
- Change management;
- Error and fault management;
- Configuration management;
- Role management;
- Workflow management; and
- Case studies and, experiences.

As an example, we have developed concept and demonstrator of a model management architecture according to Figure 4. Following the M&S development and operation process as discussed above, according to the proposed concept, all intermediate work products, documentation, data and information produced during the various M&S design, development, and application stages is collected in a single system. This approach allows efficient M&S development, maintenance and operation. It also facilitates cooperative M&S, collection of experiences and effective reuse of M&S intermediate and final results or work products.

Figure 4: Example of a Model Management Architecture.

2.2 Verification and Validation for Improving M&S Correctness, Credibility and Utility

In addition to quality improvement measures by basic system engineering principles, specific activities have to be applied to assure correctness of a model, its validity with respect to the specified project goals and constraints, as well as utility of its final modeling. Following Balci's informal definitions of **correctness** ("Is the <u>model right</u> ?") versus his informal definition of validity / utility ("Is it the <u>right model</u> ?"), verification activities have to demonstrate error free implementation of a model and simulation applications while validation measures should check validity and usability of a model, its simulation and its data for a specific purpose as well as its effectiveness with respect to predefined resource constraints like time schedules, or availability of budget and experts (see e.g. [5], [7], [8]).

While in theory verification is being considered as proof of correctness of an implementation (work product), verification of an M&S work product requires at least to demonstrate completeness and consistency of a work product implementation according to its specification (which is in general the work product of the previous modeling phase). In contrast, validation measures have to check problem-specific, predefined project constraints regarding accuracy, fidelity or fitness of a model and its results (see Figure 5).

Figure 5: M&S Credibility Assurance by Verification versus Validation.

To achieve those verification and validation goals, which also depend on the availability of intermediate work products together with additional domain knowledge and documentation, a V&V plan has to be established including all V&V techniques that should be applied. In [7], Balci has listed more than 75 V&V techniques that should be considered for application of verification and validation activities. As shown in Figure 6, he classified those techniques into 4 major categories – static versus dynamic, formal versus informal V&V-techniques ([7]). The majority of techniques listed there are well-known from software and systems engineering (e.g. [10], [11]). There are no general rules available that can be applied for selection of V&V techniques in a project. For every project, project specific requirements and constraints as well as knowledge and expertise of those who have to perform V&V activities are decisive factors for preparation of the V&V plan including all V&V activities and techniques that have to be performed.

Informal Static Dynamic Formal Audit Cause-Effect Graphing Acceptance Testing Induction Device Checking Calling Structure Analysis Assertion Checking Inference Face Validation Control Analysis Beta Testing Lambda Calculus Inspections Control Analysis Beta Testing Lambda Calculus Inspections Control Flow Analysis Beta Testing Longical Deduction Turing Test Data Dependency Analysis Comparison Testing Predicate Calculus Walkthroughs Data Dependency Analysis Comparison Testing Predicate Calculus Multhroughs Data Dependency Analysis Securitor Testing Proof of Correctness Multhroughs Data Dependency Analysis Securitor Testing Proof of Correctness Multhroughs Data Dependency Analysis Securitor Testing Proof of Correctness Multhroughs Data Dependency Analysis Execution Testing Proof of Correctness Walkthroughs Data Interface Analysis Execution Testing Proof of Correctness Symbolic Evaluation Execution Testing Proof of Correctness Proof of Correctness Symbolic Evaluation Execution Testing Proof of Correctness Proof of Correctness				
Audit Cause-Effect Graphing Acceptance Testing Induction Deak Checkhing Control Analysis Alpha Testing Induction Documentation Checking Calling Structure Analysis Assertion Checking Inference Face Validation Concurrent Process Analysis Beta Testing Londot tive Assertions Reviews State Transition Analysis Bottom-Up Testing Dredicate Calculus Turing Test Data Analysis Comprison Testing Predicate Transformation Walkthroughs Data Dependency Analysis Acceptance Testing Predicate Transformation Walkthroughs Data Chependency Analysis Scurity Testing Predicate Transformation Walkthroughs Data Analysis Scurity Testing Predicate Analysis FaultFailure Analysis Scurity Testing Model Interface Analysis Debugging User Interface Analysis Execution Testing Structoral Analysis Execution Testing Syntax Analysis Faultoral Interface Testing Data Interface Testing Data Interface Testing Syntax Analysis Faultoral Interface Testing Data Interface Testing Data Interface Testing Syntax Analysis Faultoral Interface Testing Data Interface Testing Data Interface Testing Syntax Analysis Fau	Informal	Static	Dynamic	Formal
Audit Cause-Effect Graphing Acceptance Testing Induction Desk Clackking Control Analysis Aplaa Testing Inductive Assentious Documentation Checking Control Analysis Beta Testing Lambda Calculus Inspections Control Flow Analysis Beta Testing Logical Deduction Reviews State Transition Analysis Botton-Up Testing Logical Deduction Walkthroughs Data Analysis Compriance Testing Predicate Calculus Walkthroughs Data Analysis Compriance Testing Predicate Transformation Walkthroughs Data Pependency Analysis Authorization Testing Proof of Correctness Fault-Failure Analysis Security Testing Induction Analysis Performance Testing Fault-Failure Analysis Security Testing Induction Analysis Performance Testing Interface Analysis Security Testing Induction Analysis State Flow Analysis Super Constructure Analysis Execution Testing State Flow Analysis State Flow Analysis Fault-Failure Analysis Execution Testing State Flow Analysis State Flow Analysis Fault-Failure Analysis Execution Testing State Flow Analysis State Flow Flow Analysis Symbolic Evaluation Execution Testing				
Desk Checking Control Analysis Alpha Testing Inductive Assertious Documentation Checking Calling Structure Analysis Assertion Checking Inference Face Validation Concurrent Process Analysis Beta Testing Lomba Calculus Inspections Concord Flow Analysis Botton-Up Testing Logical Deduction Reviews State Transition Analysis Botton-Up Testing Predicate Calculus Turing Test Data Analysis Comptiance Testing Predicate Transformation Walkthroughs Data Dependency Analysis Security Testing Proformance Testing Model Interface Analysis Security Testing Standards Testing Proof of Correctness Model Interface Analysis Execution Testing Standards Testing Proof of Correctness Symbolic Evaluation Execution Tracing Symbolic Evaluation Execution Tracing Symbolic Evaluation Execution Tracing Graphical Comparisons Interface Testing Symbolic Evaluation Field Testing Data Proof of Correctness Data Proof of Correctness Symbolic Evaluation Execution Tracing Standards Testing Data Proof of Correctness	Audit	Cause-Effect Graphing	Acceptance Testing	Induction
Documentation Checking Calling Structure Analysis Assertion Checking Inference Face Validation Concurrent Process Analysis Betta Testing Lambda Calculus Inspections Control Flow Analysis Botton-Up Testing Logical Deduction Reviews State Transition Analysis Compliance Testing Predicate Calculus Turing Test Data Analysis Compliance Testing Predicate Calculus Walkthroughs Data: Dependency Analysis Authorization Testing Predicate Correctness Model Interface Analysis Security Testing Interface Analysis Standards Testing Model Interface Analysis Debugging User Interface Analysis Execution Testing Symbolic Evaluation Execution Tracting Symbolic Evaluation Execution Monitoring Symbolic Evaluation Execution Tracting Graphical Comparisons Interface Analysis Traceability Assessment Field Testing Data Flow Analysis Faculto Ration Testing Traceability Assessment Field Testing Data Flow Analysis Execution Monitoring Syntex Analysis Faculto Ration Execution Tracting Graphical Comparisons Interface Testing Data Flow Faculto Ration Execution Testing Data Flow Faculto Ration Syntex Analysis </td <td>Desh Checking</td> <td>Control Analysis</td> <td>Alpha Testing</td> <td>Inductive Assertions</td>	Desh Checking	Control Analysis	Alpha Testing	Inductive Assertions
Face Validation Concurrent Process Analysis Beta Testing Lambda Calculus Inspections Conrol Flow Analysis Botton-Up Testing Logical Deduction Reviews State Transition Analysis Comprison Testing Predicate Calculus Turing Test Data Analysis Compliance Testing Predicate Transformation Walkthroughs Data Dependency Analysis Authorization Testing Proof of Correctness Pault Falture Analysis Security Testing Interface Analysis State Transformation Model Interface Analysis Debugging User Interface Analysis Execution Testing State Transformation Symbolic Evaluation Execution Tosting Structural Analysis Execution Testing Tracebility Assessment Field Testing Functronal (Black-Box)Lesting Graphical Comprisons Interface Testing Symbolic Evaluation Execution Testing Data Interface Testing User Interface Testing Syntax Analysis Full Cesting Functional (Black-Box)Lesting Graphical Comprisons Interface Testing User Interface Testing User Interface Testing Object-Flow Testing Syntax Analysis Full Peficitive Val	Documentation Checking	Calling Structure Analysis	Assertion Checking	Inference
Inspections Control Flow Analysis Botton-Up Testing Logical Deduction Reviews State Transition Analysis Comprison Testing Predicate Calculus Turing Test Data Analysis Compliance Testing Predicate Calculus Walkthroughs Data Dependency Analysis Authorization Testing Proof of Correctness Batu Flow Analysis Security Testing Parof Correctness Parof of Correctness Model Interface Analysis Standards Testing Proof of Correctness Model Interface Analysis Debugging User Interface Analysis Semantic Analysis Execution Testing Standards Testing Symbolic Evaluation Execution Toting Standards Testing Symbolic Evaluation Execution Tracing Pructional (Black-Box)Testing Symbolic Evaluation Field Testing Data Interface Testing Symbolic Evaluation Field Testing Object-Flow Testing Model Interface Testing Object-Flow Testing Data Interface Testing Object-Flow Testing Predictive Valiation Predictive Valiation Predictive Valiation Predictive Valiation Predictive Valiation Predictive Valiation Predictive Valiation Predictive Valiation Predictive Valiation Predictive Valiation Predi	Face Validation	Concurrent Process Analysis	Beta Testing	Lambda Calculus
Reviews State Transition Analysis Comparison Testing Predicate Calculus Turing Test Data Analysis Compliance Testing Predicate Transformation Walkthroughs Datt Dependency Analysis Authorization Testing Proof of Correctness Datt Flow Analysis Deet Dependency Analysis Security Testing Proof of Correctness Interface Analysis Security Testing Nodel Interface Analysis Security Testing Model Interface Analysis Descuritor Testing Standards Testing Securitor Testing Semantic Analysis Execution Monitoring Structural Analysis Execution Tracting Symbolic Evaluation Execution Tracting Symbolic Evaluation Structural Analysis Symbolic Evaluation Structural Analysis Field Testing Functional (Black-Box) Testing Graphical Comparisons Interface Testing Dota Interface Testing Object-Flow Testing Model Interface Testing Object-Flow Testing Partition Testing Predictive Validation Predictive Validation Produce Testing Deta Interface Testing Object-Flow Testing Boundary Value Testing <td>Inspections</td> <td>Control Flow Analysis</td> <td>Bottom-Up Testing</td> <td>Logical Deduction</td>	Inspections	Control Flow Analysis	Bottom-Up Testing	Logical Deduction
Turing Test Data Analysis Compliance Testing Predicate Transformation Walkthroughs Data Dependency Analysis Authorization Testing Proof of Correctness Walkthroughs Data Flow Analysis Performance Testing Proof of Correctness Fault-Failure Analysis Security Testing Proof of Correctness Model Interface Analysis Security Testing Security Testing User Interface Analysis Debugging Security Testing Structural Analysis Execution Monitoring Structural Analysis Symbolic Evaluation Execution Tracing Symbolic Evaluation Symbolic Evaluation Execution Tracing Symbolic Evaluation Syntax Analysis Fault/Failure Insertion Testing Graphical Comparisons Interface Testing Data Interface Testing Model Interface Testing Object-Flow Testing Data Interface Testing Data Interface Testing Object-Flow Testing Partition Testing Partition Testing Partition Testing Partition Testing Partition Testing Syntax Analysis Partition Testing Partition Testing	Reviews	State Transition Analysis	Comparison Testing	Predicate Calculus
Walkthroughs Date Dependency Analysis Date Flow Analysis Authorization Testing Proof of Correctness Date Flow Analysis Deformance Testing Fault/Failure Analysis Security Testing Fault/Failure Analysis Standards Testing Model Interface Analysis Debugging User Interface Analysis Debugging User Interface Analysis Execution Testing Semantic Analysis Execution Testing Standards Testing Structural Analysis Execution Profiling Symbolic Evaluation Symbolic Evaluation Execution Tracing Syntax Analysis Syntax Analysis Fault/Failure Insertion Testing Traceability Assessment Field Testing Model Interface Testing Object-Flow Testing Model Interface Testing User Interface Testing User Interface Testing User Interface Testing Object-Flow Testing Partition Testing Partition Testing Partition Testing Partition Product Testing Regression Testing Sensitivity Analysis Special Input Testing Sensitivity Analysis Special Input Testing Sensitivity Analysis	Turing Test	Data Analysis	Compliance Testing	Predicate Transformation
Fault-Failure Analysis Security Testing Interface Analysis Standards Testing Model Interface Analysis Debugging User Interface Analysis Execution Testing Semantic Analysis Execution Monitoring Structural Analysis Execution Testing Symbolic Evaluation Execution Tracing Syntax Analysis Fault/Failure Insertion Testing Traceability Assessment Field Testing Place Testing Data Interface Testing Model Interface Testing Object-Flow Testing Object-Flow Testing Predictive Validation Product Testing Predictive Validation Product Testing Predictive Validation Product Testing Predictive Validation Product Testing Sensitivity Analysis Special Input Testing Boundary Value Testing Boundary Value Testing Equivalence Partitioning Testing	Walkthroughs	Datz Dependency Analysis Datz Flow Analysis	Authorization Testing Performance Testing	Proof of Correctness
Interface Analysis Standards Testing Model Interface Analysis Debugging User Interface Analysis Execution Testing Semantic Analysis Execution Monitoring Structural Analysis Execution Profiling Symbolic Evaluation Execution Tracing Syntax Analysis Fault/Failure Insertion Testing Traceability Assessment Field Testing Functional (Black-Box) Testing Graphical Comparisons Interface Testing Model Interface Testing Object-Flow Testing Partition Testing Partition Testing Predictive Validation Standards Testing Standards Testing Boundary Value Testing Standards Testing Boundary Value Testing Equivalence Partitioning Testing		FaultFailure Analysis	Security Testing	
Model Interface AnalysisDebuggingUser Interface AnalysisExecution TastingSemantic AnalysisExecution MonitoringStructural AnalysisExecution ProfilingSymbolic EvaluationExecution TracingSyntax AnalysisFault/Failure Insertion TestingTraceability AssessmentField TestingFunctional (Black-Box) TestingGraphical ComparisonsInterface TestingData Interface TestingUser Interface TestingUser Interface TestingObject-Flow TestingPredictive ValidationProduct TestingPredictive ValidationProduct TestingSensitivity AnalysisSpecial Input TestingSensitivity AnalysisSpecial Input TestingBoundary Value TestingBoundary Value TestingEquivalence Partitioning Testing		Interface Analysis	Standards Testing	
User Interface AnalysisExecution TestingSemantic AnalysisExecution MonitoringStructural AnalysisExecution ProfilingSymbolic EvaluationExecution TracingSyntax AnalysisFault/Failure Insertion TestingTraceability AssessmentField TestingFunctional (Black-Box)TestingGraphical ComparisonsInterface TestingData Interface TestingObject-Flow TestingObject-Flow TestingPartition TestingPredictive ValidationProduct TestingSensitivity AnalysisSpecial Input TestingEquivalence Partitioning Testing		Model Interface Analysis	Debugging	
Semantic Analysis Execution Monitoring Structural Analysis Execution Profiling Symbolic Evaluation Execution Tracing Syntax Analysis Fault/Failure Insertion Testing Traceability Assessment Field Testing Functional (Black-Box)Testing Graphical Comparisons Interface Testing Data Interface Testing Object-Flow Testing Object-Flow Testing Partition Testing Predictive Validation Product Testing Predictive Validation Sensitivity Analysis Sensitivity Analysis Special Input Testing Sensitivity Analysis Special Input Testing Boundary Value Testing Equivalence Partitioning Testing Equivalence Partitioning Testing		User Interface Analysis	Execution Testing	
Structural Analysis Execution Profiling Symbolic Evaluation Execution Tracing Syntax Analysis Fault/Failure Insertion Testing Traceability Assessment Field Testing Functional (Black-Box)Testing Graphical Comparisons Interface Testing Data Interface Testing User Interface Testing User Interface Testing Object-Flow Testing Predictive Validation Product Testing Regression Testing Sensitivity Analysis Special Input Testing Boundary Value Testing Equivalence Partitioning Testing		Semantic Analysis	Execution Monitoring	
Symbolic Evaluation Execution Tracing Syntax Analysis Fault/Failure Insertion Testing Traceability Assessment Field Testing Functional (Black-Box)Testing Graphical Comparisons Interface Testing Data Interface Testing Model Interface Testing User Interface Testing Object-Flow Testing Predictive Validation Product Testing Predictive Validation Product Testing Sensitivity Analysis Special Input Testing Boundary Value Testing Boundary Value Testing Equivalence Partitioning Testing		Structural Analysis	Execution Profiling	
Syntax Analysis Fault/Failure Insertion Testing Traceability Assessment Field Testing Functional (Black-Box)Testing Graphical Comparisons Interface Testing Data Interface Testing Data Interface Testing User Interface Testing Object-Flow Testing Partition Testing Predictive Validation Product Testing Regression Testing Sensitivity Analysis Special Input Testing Boundary Value Testing Boundary Value Testing Equivalence Partitioning Testing		Symbolic Evaluation	Execution Tracing	
Traceability Assessment Field Testing Functional (Black-Box)Testing Graphical Comparisons Interface Testing Data Interface Testing User Interface Testing Object-Flow Testing Partition Testing Predictive Validation Product Testing Regression Testing Sensitivity Analysis Special Input Testing Boundary Value Testing Equivalence Partitioning Testing		Syntax Analysis	Fault/Failure Insertion Testing	
Functional (Black-Box)Testing Graphical Comparisons Interface Testing Data Interface Testing Model Interface Testing User Interface Testing Object-Flow Testing Partition Testing Predictive Validation Product Testing Regression Testing Sensitivity Analysis Special Input Testing Boundary Value Testing Equivalence Partitioning Testing		Traceability Assessment	Field Testing	
Graphical Comparisons Interface Testing Data Interface Testing Model Interface Testing User Interface Testing Object-Flow Testing Partition Testing Predictive Validation Product Testing Regression Testing Sensitivity Analysis Special Input Testing Boundary Value Testing Equivalence Partitioning Testing			Functional (Black-Box) Testing	
Interface Testing Data Interface Testing Model Interface Testing User Interface Testing Object-Flow Testing Partition Testing Predictive Validation Product Testing Regression Testing Sensitivity Analysis Special Input Testing Boundary Value Testing Equivalence Partitioning Testing			Graphical Comparisons	
Model Interface Testing Model Interface Testing User Interface Testing Object-Flow Testing Partition Testing Predictive Validation Product Testing Regression Testing Sensitivity Analysis Special Input Testing Boundary Value Testing Equivalence Partitioning Testing			Interface Testing	
User Interface Testing User Interface Testing Object-Flow Testing Partition Testing Predictive Validation Product Testing Regression Testing Sensitivity Analysis Special Input Testing Boundary Value Testing Equivalence Partitioning Testing			Data Interface Testing	
Object-Flow Testing Partition Testing Predictive Validation Product Testing Regression Testing Sensitivity Analysis Special Input Testing Boundary Value Testing Equivalence Partitioning Testing			Model Interface Testing	
Partition Testing Predictive Validation Product Testing Regression Testing Sensitivity Analysis Special Input Testing Boundary Value Testing Equivalence Partitioning Testing			Object Flow Texting	
Predictive Validation Product Testing Regression Testing Sensitivity Analysis Special Input Testing Boundary Value Testing Equivalence Partitioning Testing			Destition Testing	
Product Testing Regression Testing Sensitivity Analysis Special Input Testing Boundary Value Testing Equivalence Partitioning Testing			Predictive Validation	
Regression Testing Sensitivity Analysis Special Input Testing Boundary Value Testing Equivalence Partitioning Testing			Droduct Testing	
Sensitivity Analysis Special Input Testing Boundary Value Testing Equivalence Partitioning Testing			Regression Testing	
Special Input Testing Boundary Value Testing Equivalence Partitioning Testing			Sensitivity Analysis	
Boundary Value Testing Equivalence Partitioning Testing			Special Input Testing	
Equivalence Partitioning Testing			Boundary Value Testing	
			Equivalence Partitioning Testing	
Extreme Input Testing			Extreme Input Testing	
Invalid Input Testing			Invalid Input Testing	
Real-Time Input Testing			Real-Time Input Testing	
Self-Driven Input Testing			Self-Driven Input Testing	
Stress Testing			Stress Testing	
Trace-Driven Input Testing			Trace-Driven Input Testing	
Statistical Techniques			Statistical Techniques	
Structural (White-Box)Testing			Structural (White-Box)Testing	
Branch Testing			Branch Testing	
Condition Testing			Condition Testing	
Data Flow Testing			Data Flow Testing	
Loop Testing			Loop Testing	
Path Testing			Path Lesting	
Statement Lesting			Submadel/Models Testing	
Suomoder Moder Testing			Submodel Module Testing	
Symbolic Debugging Ton Down Testing			Ton Down Testing	
Visualization/Animation			Visualization/Animation	

V&V Techniques for Simulation Models

Figure 6: Classification of V&V-Techniques According to O. Balci (published in [7]).

Despite the fact that no general rules exist for the selection of V&V techniques, Balci has formulated fifteen general principles of VV&A that should be considered in any M&S project (see [7]). With respect to V&V planning, some major ones from this list are:

- V&V must be conducted throughout the entire M&S lifecycle;
- VV&A must be planned and documented;
- A well-formulated problem is essential to the acceptability ... of M&S results;
- The outcome of VV&A should not be considered as a binary variable where the model or simulation is absolutely correct or absolutely incorrect;
- V&V requires independence to prevent developer's bias;
- Credibility can be claimed only for the prescribed conditions for which the model or simulation is verified, validated and accredited; and
- Simulation model validity does not guarantee the credibility and acceptability of simulation results.

Organizing an M&S design and development process as proposed in Figure 1 and Figure 3, and before selection of a specific V&V technique, two different principles of V&V of a work product have to be distinguished: **intrinsic V&V** versus **pairwise V&V**. While intrinsic V&V checks the internal consistency and completeness of a single work product, pairwise V&V checks the complete and consistent transformation between work products between two model stages (see Figure 7). For example, an intermediate work product A on development level i can be seen as implementation of the work product B on development level (i-1) which is linked by a transformation arc with work product A on level i. This allows to check if work product B is a complete and consistent implementation of work product A including additional input data required for the implementation of work product B. In addition and if applicable, validation checks can be also performed on each work product. According to the proposed V&V approach, results of every intrinsic or pairwise V&V activity should result in a V&V report. The collection of all those V&V reports have to be considered for final evaluation of correctness, validity and utility of a model, simulation and data (e.g. [4], [6], [7]).

Figure 7: Pairwise Checking of Consistency and Completeness.

In addition to these V&V activities at each M&S development level, verification and validation activities can be performed between all work products on a path at different levels. For example, consistency and

completeness of a work product on a level j can be tested in comparison with all work products on levels (j-1),(j-2), etc. That means, performing feasible V&V activities between two work products along a path should always result in a V&V report. Consequent application of these principles leads to an extensive amount of V&V activities and a large collection of V&V reports.

Figure 8: Stage-Wise Verification and Validation.

2.3 Tailoring of M&S Verification and Validation Activities

In general, M&S tailoring can lead to reduction, to extension, to specialization or to balancing of M&S activities and work products as a consequence of project requirements and constraints. According to Figure 9, tailoring actions are feasible at different M&S development levels: on process, product, subject and / or role level ([13], [14]). In the same way, but depending in addition on the availability and accessibility of M&S work products, V&V tailoring can be considered.

Figure 9: Tailoring Principles ([17], [14], [15]).

For example, regarding availability of M&S resources and use risk constraints specified for a concrete project or M&S application – those tailoring actions can consider a reduction of the amount of V&V activities.

Figure 10 demonstrates consequences of tailoring by reduction: If on the Product Level the work product "Formal Model" is not available or not accessible, this leads to a reduction of adequate V&V activities and missing V&V result reports 3.1, 3.2, 3.3, as well as to missing V&V reports 4.2, 5.3, in Figure 10). If – in addition – some data is not available on the Subject Level, this can also lead to a reduction of V&V activities and missing V&V reports 2.3 and 4.5. A reason for tailoring a Formal Model could be intellectual property rights held by a developer or his or her institution so that this work product is not accessible for external review. Those tailoring actions can result in significant reduction of V&V efforts and costs but also in an increase of use risks ([10], [11], [14]).

Figure 10: Tailoring Consequences (Tailoring on Product Level and Subject Level).

3.0 GUIDELINES AND STANDARDS FOR M&S-V&V

The issue of verification and validation as basis for acceptance decisions of models, simulations and data in respect of a specific M&S application has been addressed by various regional and international working groups. While there is a general consensus on the increasing importance of this topic, only a few international guidelines or standards on V&V exist. Most of current standards are targeted on interoperability within distributed simulation systems related to either DIS or HLA standards (IEEE 1278.4 and 1516.4) or to software tests. NATO has supported the IEEE HLA VV&A efforts under two Task Groups (MSG-019 and MSG-054).

V&V of models and simulations (M&S) are supported by national policies, methodologies, tools and techniques (like the US VV&A Recommended Practice Guidance, RPG). However there was a lack of **internationally recognized** standards that address V&V of models, simulations and data from a general perspective, independent of specific M&S technology, application domain and life-cycle paradigms.

As early as 2002, a European consortium was created to address this issue under the Western European Armament Group (WEAG) umbrella: the REVVA (Reference project for VV&A) project was born. In its final composition, this consortium included 5 NATO member/partner nations (Canada, Denmark, France, The Netherlands and Sweden) and began a standardization effort in the context of SISO (Simulation Interoperability Standards Organization). Results from and experiences with the REVVA project formed the basis for the development of generic V&V guidelines developed by GM-VV-PDG (The Generic Methodology for Verification and Validation Product Development Group of SISO) also adopted by MSG-073.

In 2006, RTO approved the formation of Task Group MSG-054/TG-037, "An Overlay Standard for Verification, Validation, and Accreditation (VV&A) of Federations". That group was established to formalize the draft recommended practice produced before by MSG-019 in vetting the documents through SISO and IEEE-SA standardization processes. As a result of this Task Group, IEEE Std. 1516.4-2007 was approved by the IEEE-SA Standards Board and published as an international industry standard in December 2007. In addition to the development of this IEEE standard, the Task Group also developed components for tailoring guidance in order to match project specific risk and resource constraints.

In parallel, other nations, like Australia or Germany, also had launched initiatives for the development of national V&V guidelines.

4.0 CASE STUDY EXPERIENCES

For analysis of efficiency and effectiveness of some of the quality assurance and V&V methods proposed in Section 2, three case studies sponsored by the German Armed Forces Procurement Office (BWB) have been performed. In each of these case studies, professional M&S developers had to follow a tailored M&S engineering process as described in Section 2, and had to provide stepwise their intermediate work products plus documentations for external verification and validation. One of the case studies concerned quality assurance and phase-oriented V&V of a simulation model for analysis of traffic flow, while the other two case studies concerned external reviewing of training simulator developments during the respective development processes.

Major lessons learned of these case studies indicate that:

- At the begin of an M&S project, developer guidance has to be provided regarding the multi-stage M&S development process, its phases, role identifications, work products and templates for documentation to enable an efficient M&S development and V&V processes.
- Furthermore, additional time is required for coaching during project phases, e.g. how to plan, to tailor and to perform V&V activities and to document V&V results. Especially required is the development of a use-risk-based V&V plan at the beginning of an M&S project which has to be accepted between project sponsor and M&S developer.
- It turned out that in following M&S projects all institutions involved get a return of their time and budget investments in quality assurance and rigid V&V. But still not enough experiences are available to calculate cost-benefit relations for application of these kinds of quality, correctness and credibility assurance measures.

5.0 CONCLUSIONS

This paper briefly summarizes evolution and increasing importance of M&S design, development and manifold application principles over past decades. It also demonstrates the increasing importance of introducing quality, credibility and utility methods, measures and standards in context of increasing complexity of models, simulations and their results.

Major purpose of this paper is to show how application of general systems engineering principles can improve the quality of M&S design, development processes and multiple application of those models. It demonstrates that the introduction of standardized multi-stage M&S- and V&V-development processes – like already existing guideline IEEE-1516.4 ([12]) or the SISO-standardized guideline "Generic Methodology for Verification and Validation of Models, Simulations, and Data (GM-VV)" ([19]) – are important prerequisites for application of verification, validation measures, and for final M&S acceptance.

With respect to use-risk and cost-benefit relations, this contribution also considers goal-dependent tailoring of modeling phases, intermediate work products, roles and responsibilities as well as of V&V activities. Tailoring activities can take into account project-specific requirements and constraints regarding correctness, validity and usability, but also available budget, resources and acceptable use risks. The article also includes a brief summary of major experiences and findings from application of those approaches obtained from several case studies in Germany.

Based on current experiences it can be concluded that future research efforts should be directed towards implementation of model management systems for efficient management of design, development, operation and maintenance of all kinds of M&S- and V&V-work products, -documentation and -experiences. In addition, as complexity of systems developments and M&S applications will be further increasing, effective methods and tools for use risk identification and use risk management are urgently required.

6.0 **REFERENCES**

- [1] R.E. Shannon: "Systems Simulation the art and science"; Prentice Hall Inc., Englewood Cliffs; USA, 1975.
- [2] J. Rothenberg: "The Nature of Modeling"; A RAND Note, The RAND Cooperation, Santa Monica, USA; 1989.
- [3] H. Maisel, G. Gnugnoli: "Simulation off discrete stochastic systems"; Science Research Associates; 1972.
- [4] A. Lehmann: "Quality Assurance of Models and Simulations Demands and Solutions for Verification and Validation"; In: Proceedings of the International Top-Level Forum on Engineering Science and Technology Development Strategy: Modeling and Simulation of Complex Systems; The Chinese Academy of Engineering, 2013.
- [5] D. Brade: "Enhancing modeling and simulation accreditation by structuring verification and validation results"; In: J. Joines, R. Barton, K. Kang, P. Fishwick, Editors, Proceedings of the 2000 Winter Simulation Conference, 2000.
- [6] "Cruise Ship Carrying 1,500 Runs Aground"; In: The New York Times, 1995-06-12, 1995.
- [7] Balci, O: "Verification, Validation and Accreditation of Simulation Models". In Proceedings of the 1997 Winter Simulation Conference, Edited by S. Andradóttir, K.J. Healy, D.H. Withers, and B.L. Nelson, P. 135–14, 1997.
- [8] O. Balci: "Verification, Validation, and Testing". In: J. Banks, Editor, Handbook of Simulation, Chapter 10, John Wiley & Sons, 1998.
- [9] D. Brade: "Enhancing modeling and simulation accreditation by structuring verification and validation results". In: J. Joines, R. Barton, K. Kang, P. Fishwick, Editors, Proceedings of the 2000 Winter Simulation Conference, 2000.
- [10] IEEE Computer Society. IEEE Guide for Software Verification and Validation Plans, 1993, IEEE std 1059-1993.
- [11] IEEE Computer Society. IEEE Standard for Software Reviews, 1997; IEEE std 1028-1997.

- [12] IEEE Computer Society. IEEE Recommended Practice for Verification, Validation, and Accreditation of a Federation An Overlay to the High Level Architecture (HLA) Federation Development and Execution Process (FEDEP), 2007; IEEE Std 1516.4-2007.
- [13] Z. Wang: "Towards a measurement tool for verification and validation of simulation models". In: S. Jain, R. Creasey, J. Himmelspach, K. White, M. Fu, Editors, Proceedings of the 2011 Winter Simulation Conference, 2011.
- [14] Z. Wang: "A Characterization Approach to Selecting Verification and Validation Techniques for Simulation Projects". In: C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, A. M. Uhrmacher, Editors, Proceedings of the 2012 Winter Simulation Conference, Berlin, Germany, 2012.
- [15] Z. Wang: "Selecting Verification and Validation Techniques for Simulation Projects: A Planning and Tailoring Strategy. In: R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, M. E. Kuhl, Editors, Proceedings of the 2013 Winter Simulation Conference, Washington D.C., USA, 2013.
- [16] Z. Wang, A. Lehmann: "A graph-based approach to verification and validation of simulation models and applications". In: C. Bertelle and A. Ayesh, Editors, Proceedings of the 2008 European Simulation and Modelling Conference, Le Havre, France, 2008.
- [17] Z. Wang, A. Lehmann: "Quality assurance of models and simulation applications" In: International Journal of Modeling, Simulation, and Scientific Computing, 1(1):27 [45, 2010.
- [18] Z. Wang, A. Lehmann, A. Karagkasidis: "A multistage approach for quality- and e-science-related tailoring of modelling and simulation processes". In: Simulation News Europe, 19(2):12{20, 2009.
- [19] SISO-GUIDE-GM-VV-001.1-2012; SISO-GUIDE-GM-VV-001.2-2013; SISO-GUIDE-GM-VV-001.3-2013; SISO (Simulation Interoperability Standardization Organization), 2012 2013.

V&V of M&S: Past, Present and Future

Prof. Dr. Axel Lehmann Universität der Bundeswehr München und ITIS GmbH GERMANY

Axel.lehmann@unibw.de

ABSTRACT

Measures for Verification and Validation (V&V) of models, simulations and data (M&S) have been always important aspects and caused specific activities ensuring quality and utility of M&S results and their interpretation. Along with rapid innovations and increasing performance of computer systems, networks and software, capabilities as well as complexity of models and simulations are permanently increasing. Therefore, the major challenges of M&S nowadays are to master M&S complexity as well as quality demand.

To substantiate specific quality demands requires to keep track of evidences for correctness, validity and usefulness of models, simulations and data through verification and validation. This contribution presents an overview about importance and evolution of V&V processes and techniques established over the past, and it summarizes briefly current state-of-the-art as well as major challenges for future M&S projects.

1.0 INTRODUCTION

Besides application of fundamental natural laws, and besides processing of experiments in real world scenarios, modeling and simulation (M&S) is considered as the third pillar for enabling generation of new knowledge and of product innovations. Modeling and simulation (M&S) are receiving increasing importance as a technology which supports learning and training capabilities, serves for decision support as well as for systems analysis and evaluation. Rapid advancements of computer and communication technologies enable also rapid advancements in the field of modeling and simulation: Development and application of new modeling methods and simulation techniques, as well as a wide and increasing range of M&S application domains which result in increasing complexity of models, simulations and data.

Besides benefits of these innovations and advances, increasing risks with respect to quality of simulation model development and operation as well as regarding credibility and utility of simulation results and their interpretation have to be considered. As demonstrated by several cases, the use of erroneous models, invalid simulations or data can lead to severe safety-critical situations and can result in wrong decisions and economic damages. In June 1995, the cruise ship *Royal Majesty* grounded on Rose and Crown Shoal about 10 miles east of Nantucket Island, Massachusetts, due to a navigation model error which caused a severe safety problem. Though there were no deaths or injuries as a result of this accident but repair of the vessel and lost revenue were estimated at about US-\$7 million ([6]). Other examples of modelling errors caused deficient designs of airport baggage handling and delivery systems leading to significant economic damages.

Especially in context of the increasing importance of manifold M&S application such as component-based modeling, parallel and distributed simulation, collaborative simulation or agent-based simulation, efficient quality control and credibility assurance mechanisms have to be applied to avoid safety-critical, expensive and other unwanted side effects. This requires the application of standardized engineering processes for M&S design, development and operation, including careful selection and application of M&S verification, Validation and Acceptance (VV&A) processes, methods and supporting tools.

This chapter presents a brief overview of terminology and of basic concepts applied in context of modelling and simulation, in general. It also includes a review of the evolution of VV&A methods and techniques applied to perform quality assurance, verification and validation.

1.1 Basic Terminology

Following J. Rothenberg's definition, a model can be defined as a symbolic, abstract, cost-effective and safe referent of something else for some specific cognitive purpose [1]. Most of human reasoning and decision making processes are based on mental modeling. Even in everyday life, mental models are being used for analysing situations or for making decisions. Understanding and analysis of real world problems require – at least in general – simplification and abstraction of reality as humans are only able to conclude interdependencies between about 5 - 7 parameters at the same time.

As mental models are built intuitively based on experiences, they belong to the category of **inductive models**. Inductive modelling approaches enable reasoning based on similar situations or cases. In contrast, the majority of computer-based models and simulations used nowadays for analyses, decision making or training are designed and applied as **deductive models** expressing qualitative or quantitative dependencies between goal, input and state parameters. Interdependencies between these parameters can be described mathematical formulas, numerical or logical algorithms. In the following, we will focus on design and application principles of those kinds of deductive models.

Along these lines, and in accordance with Maisel and Gnugnoli (in [3]), **simulation** can be defined as **a** (numerical) technique for conducting experiments on a computer; this technique involves certain types of mathematical and logical models that describe real world behaviour or the behaviour of a system over periods of time. This definition describes simulation explicitly as a technique for solving and using models by means of computers. This definition also indicates that (computer-based) simulation is a multi-stage process which differentiates between stages like conceptual model design, its formal description, technical solution and experimental applications.

For collecting evidences of correctness, validity and utility of models, simulations and data, some general principles and specific techniques for M&S verification and validation can be applied. An informal but clear distinction between these terms has been presented already long time ago by Balci: Application of verification techniques provides evidences for M&S correctness ("Is the **model right** ?") opposed to validation techniques which can provide evidences for validity and utility of an M&S regarding its specific application goals and constraints ("Is it **the right model**?"). Meanwhile, multiple and more precise definitions for verification and validation are provided by national and international standards, like in DoD-or IEEE-Standards.

In GM-VV-Volume 1 ([22]), the following definitions are established and are used by all contributions of this Lecture Series seminar:

- Verification: The process of providing evidence justifying the M&S system's correctness.
- Validation: The process of providing evidence justifying the M&S system's validity. Validity is the property of an M&S system's representation of the simuland to correspond sufficiently enough with the referent for the intended use. The simuland is the system or process that is simulated by a simulation while the referent is "... the codified body of knowledge about a thing being simulated (IEEEStd 1516.4; [12]).
- Acceptance: The process that ascertains whether an M&S system is fit for its intended use.
- Project demands like use risk, time schedules, limited resources or intellectual property rights can be constraints that have to be considered while planning M&S activities, Therefore, project-specific tailoring of M&S activities including V&V planning is required in general. In context of GM-VV,

Tailoring is defined as "...the modification of V&V processes V&V organization and V&V products to fit agreed risks, resources, and implementation constraints." ([22])

These and some alternative but closely related definitions from other international M&S standards can be found in SISO-GUIDE-GM-VV-001.1-2012 (Volume 1 [22]).

2.0 BASIC PRINCIPLES AND TECHNIQUES FOR M&S DEVELOPMENT; VERIFICATION AND VALIDATION

In the first decades of computer-based M&S, modeling was considered more as creative art rather than an engineering discipline. Shannon described "....the art of modeling consists in an ability to analyse a problem, abstract from it its essential features, select and modify basic assumptions that characterize the system, and then enrich and elaborate the model until a useful approximation results." ([2]). Already in the same book – published in 1975 – Shannon and others also mention model building as "... an evolutionary multi-stage process where evolution is depending on factors like user requirements, requested model flexibility, available resources and skills." But he also mentions that a model building process also relays on the communication and collaboration between model builder and model user to ensure that the modelling results meet the relevant goals, objectives and criteria of a project defined by the project sponsor ([2]).

To assure a demanded level of M&S quality, utility and credibility of its results, this contribution promotes the application of the general "divide and conquer" engineering principle in threefold:

- Each M&S project has to be considered and should be processed like a typical engineering process: M&S development and application require strict separation between different M&S phases and activities. According to Figure 1, each M&S phase or activity has to result in a work product of (intermediate) M&S results along with some documentation. For each M&S phase, roles and responsibilities of team members have to be defined performing the activities and contributing to these work products;
- Verification and validation (V&V) of (intermediate) work products of each modeling phase should be performed stepwise by application of verification and validation processes and techniques. All results of applied V&V activities have to be documented by means of V&V reports (see Figure 2).
- Basically, V&V planning which includes the selection of V&V techniques and intensity of V&V activities should be tailored according project-specific requirements and constraints.

Figure 1: Typical multi-phase M&S design, development and application process ([5], [4]).

Figure 2: Meta model of an M&S Building and Application Process ([14], [17]).

In accordance with these definitions and as widely accepted by the M&S community, a model and simulation building and application process is basically a multi-stage process. As demonstrated in Figure 1, each stage, or phase, of this process requires generally input from domain experts and/or data, an execution of stage-specific activities by skilled persons, and each stage has to provide an (intermediate or final) work product with documentation as result of this working stage. The iterative, evolutionary character of a typical M&S building process can lead to optional solutions, work products as well as to different versions of a

work product (as indicated by the tree-structured graph on the right hand side in Figure 3 which will be discussed in detail in Section 2.1).

Figure 3: Typical Multi-Phase M&S Design, Development and Application Process (e.g. [4], [5], [17]).

2.1 A Systems Engineering Approach for M&S Development and Operation

As mentioned before, in the past computer-based modelling and simulation model building has been considered more like an art rather than a scientific or an engineering challenge (e.g. see Shannon [1]). Due to permanently increasing scope and complexity of models being built and applied nowadays, M&S projects can only be mastered if some general engineering principles are also applied for M&S design, development, maintenance, and quality assurance. One of those principles concerns guidelines or standards for well-structured and globally accepted M&S- and V&V processes. The meta model in Figure 2 describes the generic structure of a typical M&S building and application process, including activities, working products, roles and responsibilities of those contributing to an M&S project.

Permanent increasing performance and capabilities of ICT hardware and software, improved or novel modeling methods and a huge variety of powerful M&S tools enable the development and application of very complex models. On one side, basic engineering practices and standardized procedures are required to guarantee the demanded quality of development and operation processes of complex simulation applications as a whole.

Like in other engineering disciplines (e.g. [8], [10], [11], [12]), as well as already fixed in M&S standards like in IEEE 1516.4 for the FEDEP ([12]), or in "Generic Methodology for Verification and Validation of Models, Simulation and Data (GM-VV)" ([22]), a "divide and conquer" strategy is proposed according to which an M&S process consists of a fixed sequence of different modeling phases, or development levels, respectively. To process the activities of a modeling phase requires phase-specific knowledge and input data to transform the results – the work products – of the previous modeling phase. For example, according to Figure 2 and Figure 3, each M&S development process starts with a problem definition phase (development level 1) based on a project's Sponsor Needs (SN) in which information about goals, requirements and constraints of a concrete M&S project are used as input to produce a Structured Problem Specification (SPD) as result documented in an intermediate work product. In the following development phase, this work

product together with additional information (e.g. measured data or assumptions about a system under consideration) should be used as specification for transformation of the Structured Problem Description to a work product "Conceptual Model" (CM). The Conceptual Model in turn can be considered as specification for transforming the Conceptual model to a Formal Model (FM) by using a problem adequate modeling method or formalism, etc. ([4], [9], [17]).

As indicated by the green colored graphical example of a tree structure in Figure 3 (on the right hand side), nodes represent work products and arcs represent transformations between nodes. A Structured Problem Description (SPD) may result in different Conceptual Model (CM) options (in this example: 2 nodes on the next M&S development level). As a result of some modifications, each of those Conceptual Model work products might be modified again in different versions (as indicated by doted lines between the nodes on the same level). In general, transformation of an intermediate work product can result in different, optional solutions in the following modeling phase (work products), while each of those can be implemented in different (e.g. refined) versions again.

This approach leads to a tree-structured M&S development process with relations like "transformation" or "modification" between intermediate work products and final M&S experimentation results. Starting from the root node down to the leaves of a tree, each path describes all the intermediate work products of a possible solution or alternative solution approaches for a given problem. Vice versa, paths starting from leaves up to the root of a tree can be used for error detection, fault analysis and interpretation of experimentation results [13], [16].

Besides these benefits, this systems engineering approach offers additional opportunities for efficient reusability or further development of models or model components. These developments can start from or are based on already existing intermediate work products and links to those roles or individuals who have been in charge of these work product developments. To support effectively those additional kinds of M&S application and to keep track of a model's history as basis for further developments, tool support by a model management system is highly recommended. Major capabilities and services of such a model management system serving as platform for all those involved in the different phases of an M&S process should include:

- Versioning;
- Change management;
- Error and fault management;
- Configuration management;
- Role management;
- Workflow management; and
- Case studies and, experiences.

As an example, we have developed concept and demonstrator of a model management architecture according to Figure 4. Following the M&S development and operation process as discussed above, according to the proposed concept, all intermediate work products, documentation, data and information produced during the various M&S design, development, and application stages is collected in a single system. This approach allows efficient M&S development, maintenance and operation. It also facilitates cooperative M&S, collection of experiences and effective reuse of M&S intermediate and final results or work products.

Figure 4: Example of a Model Management Architecture.

2.2 Verification and Validation for Improving M&S Correctness, Credibility and Utility

In addition to quality improvement measures by basic system engineering principles, specific activities have to be applied to assure correctness of a model, its validity with respect to the specified project goals and constraints, as well as utility of its final modeling. Following Balci's informal definitions of **correctness** ("Is the <u>model right</u> ?") versus his informal definition of validity / utility ("Is it the <u>right model</u> ?"), verification activities have to demonstrate error free implementation of a model and simulation applications while validation measures should check validity and usability of a model, its simulation and its data for a specific purpose as well as its effectiveness with respect to predefined resource constraints like time schedules, or availability of budget and experts (see e.g. [5], [7], [8]).

While in theory verification is being considered as proof of correctness of an implementation (work product), verification of an M&S work product requires at least to demonstrate completeness and consistency of a work product implementation according to its specification (which is in general the work product of the previous modeling phase). In contrast, validation measures have to check problem-specific, predefined project constraints regarding accuracy, fidelity or fitness of a model and its results (see Figure 5).

Figure 5: M&S Credibility Assurance by Verification versus Validation.

To achieve those verification and validation goals, which also depend on the availability of intermediate work products together with additional domain knowledge and documentation, a V&V plan has to be established including all V&V techniques that should be applied. In [7], Balci has listed more than 75 V&V techniques that should be considered for application of verification and validation activities. As shown in Figure 6, he classified those techniques into 4 major categories – static versus dynamic, formal versus informal V&V-techniques ([7]). The majority of techniques listed there are well-known from software and systems engineering (e.g. [10], [11]). There are no general rules available that can be applied for selection of V&V techniques in a project. For every project, project specific requirements and constraints as well as knowledge and expertise of those who have to perform V&V activities are decisive factors for preparation of the V&V plan including all V&V activities and techniques that have to be performed.

Informal	Static	Dynamic	Formal
Audit	Cause-Effect Graphing	Acceptance Testing	Induction
Desh Checking	Control Analysis	Alpha Testing	Inductive Assertions
Documentation Checking	Calling Structure Analysis	Assertion Checking	Inference
Face Validation	Concurrent Process Analysis	Beta Testing	Lambda Calculus
Inspections	Control Flow Analysis	Bottom-Up Testing	Logical Deduction
Reviews	State Transition Analysis	Comparison Testing	Predicate Calculus
Turing Test	Data Analysis	Compliance Testing	Predicate Transformation
Walkthroughs	Datz Dependency Analysis Datz Flow Analysis	Authorization Testing Performance Testing	Proof of Correctness
	Fault Failure Analysis	Security Testing	
	Interface Analysis	Standards Testing	
	Model Interface Analysis	Debugging	
	User Interface Analysis	Execution Testing	
	Semantic Analysis	Execution Monitoring	
	Structural Analysis	Execution Profiling	
	Symbolic Evaluation	Execution Tracing	
	Syntax Analysis	Fault/Failure Insertion Testing	
	Traceability Assessment	Field Testing	
		Functional (Black-Box)Testing	
		Graphical Comparisons	
		Interface Testing	
		Data Interface Testing	
		Model Interface Testing	
		User Interface Testing	
		Object-Flow Testing	
		Partition Testing	
		Predictive Validation	
		Product Testing	
		Regression Testing	
		Sensial Junut Testing	
		Special Input Testing	
		Equivalence Dertitioning Testing	
		Extrane Input Testing	
		Introvid Imput Testing	
		Real-Time Input Testing	
		Self-Driven Input Testing	
		Stress Testing	
		Trace-Driven hout Testing	
		Statistical Techniques	
		Structural (White-Box)Testing	
		Branch Testing	
		Condition Testing	
		Data Flow Testing	
		Loop Testing	
		Path Testing	
		Statement Testing	
		Submodel/Module Testing	
		Symbolic Debugging	
		Top-Down Testing	
		Visualization/Animation	

V&V Techniques for Simulation Models

Figure 6: Classification of V&V-Techniques According to O. Balci (published in [7]).

Despite the fact that no general rules exist for the selection of V&V techniques, Balci has formulated fifteen general principles of VV&A that should be considered in any M&S project (see [7]). With respect to V&V planning, some major ones from this list are:

- V&V must be conducted throughout the entire M&S lifecycle;
- VV&A must be planned and documented;
- A well-formulated problem is essential to the acceptability ... of M&S results;
- The outcome of VV&A should not be considered as a binary variable where the model or simulation is absolutely correct or absolutely incorrect;
- V&V requires independence to prevent developer's bias;
- Credibility can be claimed only for the prescribed conditions for which the model or simulation is verified, validated and accredited; and
- Simulation model validity does not guarantee the credibility and acceptability of simulation results.

Organizing an M&S design and development process as proposed in Figure 1 and Figure 3, and before selection of a specific V&V technique, two different principles of V&V of a work product have to be distinguished: **intrinsic V&V** versus **pairwise V&V**. While intrinsic V&V checks the internal consistency and completeness of a single work product, pairwise V&V checks the complete and consistent transformation between work products between two model stages (see Figure 7). For example, an intermediate work product A on development level i can be seen as implementation of the work product B on development level (i-1) which is linked by a transformation arc with work product A on level i. This allows to check if work product B is a complete and consistent implementation of work product A including additional input data required for the implementation of work product B. In addition and if applicable, validation checks can be also performed on each work product. According to the proposed V&V approach, results of every intrinsic or pairwise V&V activity should result in a V&V report. The collection of all those V&V reports have to be considered for final evaluation of correctness, validity and utility of a model, simulation and data (e.g. [4], [6], [7]).

Figure 7: Pairwise Checking of Consistency and Completeness.

In addition to these V&V activities at each M&S development level, verification and validation activities can be performed between all work products on a path at different levels. For example, consistency and

completeness of a work product on a level j can be tested in comparison with all work products on levels (j-1),(j-2), etc. That means, performing feasible V&V activities between two work products along a path should always result in a V&V report. Consequent application of these principles leads to an extensive amount of V&V activities and a large collection of V&V reports.

Figure 8: Stage-Wise Verification and Validation.

2.3 Tailoring of M&S Verification and Validation Activities

In general, M&S tailoring can lead to reduction, to extension, to specialization or to balancing of M&S activities and work products as a consequence of project requirements and constraints. According to Figure 9, tailoring actions are feasible at different M&S development levels: on process, product, subject and / or role level ([13], [14]). In the same way, but depending in addition on the availability and accessibility of M&S work products, V&V tailoring can be considered.

Figure 9: Tailoring Principles ([17], [14], [15]).

For example, regarding availability of M&S resources and use risk constraints specified for a concrete project or M&S application – those tailoring actions can consider a reduction of the amount of V&V activities.

Figure 10 demonstrates consequences of tailoring by reduction: If on the Product Level the work product "Formal Model" is not available or not accessible, this leads to a reduction of adequate V&V activities and missing V&V result reports 3.1, 3.2, 3.3, as well as to missing V&V reports 4.2, 5.3, in Figure 10). If – in addition – some data is not available on the Subject Level, this can also lead to a reduction of V&V activities and missing V&V reports 2.3 and 4.5. A reason for tailoring a Formal Model could be intellectual property rights held by a developer or his or her institution so that this work product is not accessible for external review. Those tailoring actions can result in significant reduction of V&V efforts and costs but also in an increase of use risks ([10], [11], [14]).

Figure 10: Tailoring Consequences (Tailoring on Product Level and Subject Level).

3.0 GUIDELINES AND STANDARDS FOR M&S-V&V

The issue of verification and validation as basis for acceptance decisions of models, simulations and data in respect of a specific M&S application has been addressed by various regional and international working groups. While there is a general consensus on the increasing importance of this topic, only a few international guidelines or standards on V&V exist. Most of current standards are targeted on interoperability within distributed simulation systems related to either DIS or HLA standards (IEEE 1278.4 and 1516.4) or to software tests. NATO has supported the IEEE HLA VV&A efforts under two Task Groups (MSG-019 and MSG-054).

V&V of models and simulations (M&S) are supported by national policies, methodologies, tools and techniques (like the US VV&A Recommended Practice Guidance, RPG). However there was a lack of **internationally recognized** standards that address V&V of models, simulations and data from a general perspective, independent of specific M&S technology, application domain and life-cycle paradigms.

As early as 2002, a European consortium was created to address this issue under the Western European Armament Group (WEAG) umbrella: the REVVA (Reference project for VV&A) project was born. In its final composition, this consortium included 5 NATO member/partner nations (Canada, Denmark, France, The Netherlands and Sweden) and began a standardization effort in the context of SISO (Simulation Interoperability Standards Organization). Results from and experiences with the REVVA project formed the basis for the development of generic V&V guidelines developed by GM-VV-PDG (The Generic Methodology for Verification and Validation Product Development Group of SISO) also adopted by MSG-073.

In 2006, RTO approved the formation of Task Group MSG-054/TG-037, "An Overlay Standard for Verification, Validation, and Accreditation (VV&A) of Federations". That group was established to formalize the draft recommended practice produced before by MSG-019 in vetting the documents through SISO and IEEE-SA standardization processes. As a result of this Task Group, IEEE Std. 1516.4-2007 was approved by the IEEE-SA Standards Board and published as an international industry standard in December 2007. In addition to the development of this IEEE standard, the Task Group also developed components for tailoring guidance in order to match project specific risk and resource constraints.

In parallel, other nations, like Australia or Germany, also had launched initiatives for the development of national V&V guidelines.

4.0 CASE STUDY EXPERIENCES

For analysis of efficiency and effectiveness of some of the quality assurance and V&V methods proposed in Section 2, three case studies sponsored by the German Armed Forces Procurement Office (BWB) have been performed. In each of these case studies, professional M&S developers had to follow a tailored M&S engineering process as described in Section 2, and had to provide stepwise their intermediate work products plus documentations for external verification and validation. One of the case studies concerned quality assurance and phase-oriented V&V of a simulation model for analysis of traffic flow, while the other two case studies concerned external reviewing of training simulator developments during the respective development processes.

Major lessons learned of these case studies indicate that:

- At the begin of an M&S project, developer guidance has to be provided regarding the multi-stage M&S development process, its phases, role identifications, work products and templates for documentation to enable an efficient M&S development and V&V processes.
- Furthermore, additional time is required for coaching during project phases, e.g. how to plan, to tailor and to perform V&V activities and to document V&V results. Especially required is the development of a use-risk-based V&V plan at the beginning of an M&S project which has to be accepted between project sponsor and M&S developer.
- It turned out that in following M&S projects all institutions involved get a return of their time and budget investments in quality assurance and rigid V&V. But still not enough experiences are available to calculate cost-benefit relations for application of these kinds of quality, correctness and credibility assurance measures.

5.0 CONCLUSIONS

This paper briefly summarizes evolution and increasing importance of M&S design, development and manifold application principles over past decades. It also demonstrates the increasing importance of introducing quality, credibility and utility methods, measures and standards in context of increasing complexity of models, simulations and their results.

Major purpose of this paper is to show how application of general systems engineering principles can improve the quality of M&S design, development processes and multiple application of those models. It demonstrates that the introduction of standardized multi-stage M&S- and V&V-development processes – like already existing guideline IEEE-1516.4 ([12]) or the SISO-standardized guideline "Generic Methodology for Verification and Validation of Models, Simulations, and Data (GM-VV)" ([22]) – are important prerequisites for application of verification, validation measures, and for final M&S acceptance.

With respect to use-risk and cost-benefit relations, this contribution also considers goal-dependent tailoring of modeling phases, intermediate work products, roles and responsibilities as well as of V&V activities. Tailoring activities can take into account project-specific requirements and constraints regarding correctness, validity and usability, but also available budget, resources and acceptable use risks. The article also includes a brief summary of major experiences and findings from application of those approaches obtained from several case studies in Germany.

Based on current experiences it can be concluded that future research efforts should be directed towards implementation of model management systems for efficient management of design, development, operation and maintenance of all kinds of M&S- and V&V-work products, -documentation and -experiences. In addition, as complexity of systems developments and M&S applications will be further increasing, effective methods and tools for use risk identification and use risk management are urgently required.

6.0 **REFERENCES**

- [1] R.E. Shannon: "Systems Simulation the art and science"; Prentice Hall Inc., Englewood Cliffs; USA, 1975.
- [2] J. Rothenberg: "The Nature of Modeling"; A RAND Note, The RAND Cooperation, Santa Monica, USA; 1989.
- [3] H. Maisel, G. Gnugnoli: "Simulation off discrete stochastic systems"; Science Research Associates; 1972.
- [4] A. Lehmann: "Quality Assurance of Models and Simulations Demands and Solutions for Verification and Validation"; In: Proceedings of the International Top-Level Forum on Engineering Science and Technology Development Strategy: Modeling and Simulation of Complex Systems; The Chinese Academy of Engineering, 2013.
- [5] D. Brade: "Enhancing modeling and simulation accreditation by structuring verification and validation results"; In: J. Joines, R. Barton, K. Kang, P. Fishwick, Editors, Proceedings of the 2000 Winter Simulation Conference, 2000.
- [6] "Cruise Ship Carrying 1,500 Runs Aground"; In: The New York Times, 1995-06-12, 1995.
- [7] Balci, O: "Verification, Validation and Accreditation of Simulation Models". In Proceedings of the 1997 Winter Simulation Conference, Edited by S. Andradóttir, K.J. Healy, D.H. Withers, and B.L. Nelson, P. 135–14, 1997.
- [8] O. Balci: "Verification, Validation, and Testing". In: J. Banks, Editor, Handbook of Simulation, Chapter 10, John Wiley & Sons, 1998.
- [9] D. Brade: "Enhancing modeling and simulation accreditation by structuring verification and validation results". In: J. Joines, R. Barton, K. Kang, P. Fishwick, Editors, Proceedings of the 2000 Winter Simulation Conference, 2000.
- [10] IEEE Computer Society. IEEE Guide for Software Verification and Validation Plans, 1993, IEEE std 1059-1993.
- [11] IEEE Computer Society. IEEE Standard for Software Reviews, 1997; IEEE std 1028-1997.

- [12] IEEE Computer Society. IEEE Recommended Practice for Verification, Validation, and Accreditation of a Federation An Overlay to the High Level Architecture (HLA) Federation Development and Execution Process (FEDEP), 2007; IEEE Std 1516.4-2007.
- [13] Z. Wang: "Towards a measurement tool for verification and validation of simulation models". In: S. Jain, R. Creasey, J. Himmelspach, K. White, M. Fu, Editors, Proceedings of the 2011 Winter Simulation Conference, 2011.
- [14] Z. Wang: "A Characterization Approach to Selecting Verification and Validation Techniques for Simulation Projects". In: C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, A. M. Uhrmacher, Editors, Proceedings of the 2012 Winter Simulation Conference, Berlin, Germany, 2012.
- [15] Z. Wang: "Selecting Verification and Validation Techniques for Simulation Projects: A Planning and Tailoring Strategy. In: R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, M. E. Kuhl, Editors, Proceedings of the 2013 Winter Simulation Conference, Washington D.C., USA, 2013.
- [16] Z. Wang, A. Lehmann: "A graph-based approach to verification and validation of simulation models and applications". In: C. Bertelle and A. Ayesh, Editors, Proceedings of the 2008 European Simulation and Modelling Conference, Le Havre, France, 2008.
- [17] Z. Wang, A. Lehmann: "Quality assurance of models and simulation applications" In: International Journal of Modeling, Simulation, and Scientific Computing, 1(1):27 [45, 2010.
- [18] Z. Wang, A. Lehmann, A. Karagkasidis: "A multistage approach for quality- and e-science-related tailoring of modelling and simulation processes". In: Simulation News Europe, 19(2):12{20, 2009.
- [19] SISO-GUIDE-GM-VV-001.1-2012; SISO-GUIDE-GM-VV-001.2-2013; SISO-GUIDE-GM-VV-001.3-2013; SISO (Simulation Interoperability Standardization Organization), 2012 2013.

